2025-04-20 00:39:50
所述生成軟件樣本的dll和api信息特征視圖,是先統(tǒng)計所有類別已知的軟件樣本的pe可執(zhí)行文件引用的dll和api信息,從中選取引用頻率**高的多個dll和api信息;然后判斷當前的軟件樣本的導入節(jié)里是否存在選擇出的某個引用頻率**高的dll和api信息,如存在,則將當前軟件樣本的該dll或api信息以1表示,否則將其以0表示,從而對當前軟件樣本的所有dll和api信息進行表示形成當前軟件樣本的dll和api信息特征視圖。進一步的,所述生成軟件樣本的格式信息特征視圖,是從當前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,形成當前軟件樣本的格式信息特征視圖。進一步的,所述從當前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,是從當前軟件樣本的pe格式結(jié)構(gòu)信息中確定存在特定格式異常的pe格式結(jié)構(gòu)特征以及存在明顯的統(tǒng)計差異的格式結(jié)構(gòu)特征;所述特定格式異常包括:(1)代碼從**后一節(jié)開始執(zhí)行,(2)節(jié)頭部可疑的屬性,(3)pe可選頭部有效尺寸的值不正確,(4)節(jié)之間的“間縫”,(5)可疑的代碼重定向,(6)可疑的代碼節(jié)名稱,(7)可疑的頭部***,(8)來自,(9)導入地址表被修改,(10)多個pe頭部,(11)可疑的重定位信息,。負載測試證實系統(tǒng)**大承載量較宣傳數(shù)據(jù)低18%。昆明軟件測試單位
在介紹諸多知識點的過程當中結(jié)合直觀形象的圖表或?qū)嶋H案例進行深入淺出的分析,從而使讀者可以更好地理解秋掌握軟件測試理論知識,并迅速地運用到實際測試工作中去。本書適合作為各層次高等院校計算機及相關(guān)的教學用書,也可作為軟件測試人員的參考書。目錄前言第1章概述第2章軟件測試基礎(chǔ)第3章單元測試第4章集成測試第5章系統(tǒng)測試……軟件測試技術(shù)圖書2書名:軟件測試技術(shù)層次:高職高專配套:電子課件作者:徐芳出版社:機械工業(yè)出版社出版時間:2011-6-21ISBN:開本:16開定價:¥內(nèi)容簡介本書根據(jù)軟件測試教學的需要,結(jié)合讀者對象未來的職業(yè)要求和定位,除了盡力***闡述軟件測試技術(shù)基本概念外,采取了計劃、設(shè)計與開發(fā)、執(zhí)行這樣的工程步驟來描述軟件測試的相關(guān)知識,使學生在學習軟件測試的技術(shù)知識時,能夠同時獲得工程化思維方式的訓練。本書共7章。第1章介紹軟件測試的基本知識;第2章介紹如何制定軟件測試計劃;第3章介紹測試用例的設(shè)計和相關(guān)技術(shù);第4章介紹執(zhí)行測試中相關(guān)技術(shù)和方法;第5章介紹實際工作中各種測試方法;第6章介紹MI公司的一套測試工具的使用,包括功能、性能和測試管理工具;第7章通過一個實例,給出了完整的與軟件測試相關(guān)的文檔。太原第三方軟件評測機構(gòu)對比分析顯示資源占用率高于同類產(chǎn)品均值26%。
軟件測試技術(shù)測試分類編輯軟件測試的狹義論和廣義論——靜態(tài)和動態(tài)的測試軟件測試技術(shù)軟件測試的辨證論——正向思維和反向思維軟件測試的風險論——測試是評估軟件測試的經(jīng)濟學觀點——為盈利而測試軟件測試的標準論——驗證和確認軟件測試技術(shù)測試工具編輯幾種常用的測試工具:1、軟件錯誤管理工具Bugzilla2、功能測試工具WinRunner3、負載測試工具LoadRunner4、測試管理工具TestDirector軟件測試技術(shù)同名圖書編輯軟件測試技術(shù)圖書1書名:軟件測試技術(shù)軟件測試技術(shù)作者:曲朝陽出版社:**水利水電出版社出版時間:2006ISBN:97開本:16定價:元內(nèi)容簡介本書詳盡地闡述了軟件測試領(lǐng)域中的一些基本理論和實用技術(shù)。首先從軟件測試的基本原則,以及常用的軟件測試技術(shù)入手,介紹了與軟件測試領(lǐng)域相關(guān)的基礎(chǔ)知識。然后,分別從單元測試、集成測試和系統(tǒng)測試3個層面深入分析了如何選擇和設(shè)計有效的測試用例,制定合適的測試策略等主題。**后,討論了面向?qū)ο蟮能浖y試和軟件測試自動化技術(shù)。附錄中還附錄了常見的軟件錯誤,供讀者參閱。本書作為軟件測試的實際應(yīng)用參考書,除了力求突出基本知識和基本概念的表述外,更注重軟件測試技術(shù)的運用。
***級初始級TMM初始級軟件測試過程的特點是測試過程無序,有時甚至是混亂的,幾乎沒有妥善定義的。初始級中軟件的測試與調(diào)試常常被混為一談,軟件開發(fā)過程中缺乏測試資源,工具以及訓練有素的測試人員。初始級的軟件測試過程沒有定義成熟度目標。第二級定義級TMM的定義級中,測試己具備基本的測試技術(shù)和方法,軟件的測試與調(diào)試己經(jīng)明確地被區(qū)分開。這時,測試被定義為軟件生命周期中的一個階段,它緊隨在編碼階段之后。但在定義級中,測試計劃往往在編碼之后才得以制訂,這顯然有背于軟件工程的要求。TMM的定義級中需實現(xiàn)3個成熟度目標:制訂測試與調(diào)試目標,啟動測試計劃過程,制度化基本的測試技術(shù)和方法。(I)制訂測試與調(diào)試目標軟件**必須消晰地區(qū)分軟件開發(fā)的測試過程與調(diào)試過程,識別各自的目標,任務(wù)和括動。正確區(qū)分這兩個過程是提高軟件**測試能力的基礎(chǔ)。與調(diào)試工作不同,測試工作是一種有計劃的活動,可以進行管理和控制。這種管理和控制活動需要制訂相應(yīng)的策略和政策,以確定和協(xié)調(diào)這兩個過程。制訂測試與調(diào)試目標包含5個子成熟度目標:1)分別形成測試**和調(diào)試**,并有經(jīng)費支持。2)規(guī)劃并記錄測試目標。3)規(guī)劃井記錄調(diào)試目標。4)將測試和調(diào)試目標形成文檔。性能基準測試GPU利用率未達理論**大值67%。
置環(huán)境操作系統(tǒng)+服務(wù)器+數(shù)據(jù)庫+軟件依賴5執(zhí)行用例6回歸測試及缺陷**7輸出測試報告8測試結(jié)束軟件架構(gòu)BSbrowser瀏覽器+server服務(wù)器CSclient客戶端+server服務(wù)器1標準上BS是在服務(wù)器和瀏覽器都存在的基礎(chǔ)上開發(fā)2效率BS中負擔在服務(wù)器上CS中的客戶端會分擔,CS效率更高3**BS數(shù)據(jù)依靠http協(xié)議進行明文輸出不**4升級上bs更簡便5開發(fā)成本bs更簡單cs需要客戶端安卓和ios軟件開發(fā)模型瀑布模型1需求分析2功能設(shè)計3編寫代碼4功能實現(xiàn)切入點5軟件測試需求變更6完成7上線維護是一種線性模型的一種,是其他開發(fā)模型的基礎(chǔ)測試的切入點要留下足夠的時間可能導致測試不充分,上線后才暴露***開發(fā)的各個階段比較清晰需求調(diào)查適合需求穩(wěn)定的產(chǎn)品開發(fā)當前一階段完成后,您只需要去關(guān)注后續(xù)階段可在迭代模型中應(yīng)用瀑布模型可以節(jié)省大量的時間和金錢缺點1)各個階段的劃分完全固定,階段之間產(chǎn)生大量的文檔,極大地增加了工作量。2)由于開發(fā)模型是線性的,用戶只有等到整個過程的末期才能見到開發(fā)成果,從而增加了開發(fā)風險。3)通過過多的強制完成日期和里程碑來**各個項目階段。4)瀑布模型的突出缺點是不適應(yīng)用戶需求的變化瀑布模型強調(diào)文檔的作用,并要求每個階段都要仔細驗證。滲透測試報告暴露2個高危API接口需緊急加固。哈爾濱軟件評測實驗室
自動化測試發(fā)現(xiàn)7個邊界條件未處理的異常情況。昆明軟件測試單位
且4個隱含層中間間隔設(shè)置有dropout層。用于輸入合并抽取的高等特征表示的深度神經(jīng)網(wǎng)絡(luò)包含2個隱含層,其***個隱含層的神經(jīng)元個數(shù)是64,第二個神經(jīng)元的隱含層個數(shù)是10,且2個隱含層中間設(shè)置有dropout層。且所有dropout層的dropout率等于。本次實驗使用了80%的樣本訓練,20%的樣本驗證,訓練50個迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,中間融合模型的準確率變化曲線如圖17所示,模型的對數(shù)損失變化曲線如圖18所示。從圖17和圖18可以看出,當epoch值從0增加到20過程中,模型的訓練準確率和驗證準確率快速提高,模型的訓練對數(shù)損失和驗證對數(shù)損失快速減少;當epoch值從30到50的過程中,中間融合模型的訓練準確率和驗證準確率基本保持不變,訓練對數(shù)損失緩慢下降;綜合分析圖17和圖18的準確率和對數(shù)損失變化曲線,選取epoch的較優(yōu)值為30。確定模型的訓練迭代數(shù)為30后,進行了10折交叉驗證實驗。中間融合模型的10折交叉驗證的準確率是%,對數(shù)損失是,混淆矩陣如圖19所示,規(guī)范化后的混淆矩陣如圖20所示。中間融合模型的roc曲線如圖21所示,auc值為,已經(jīng)非常接近auc的**優(yōu)值1。(7)實驗結(jié)果比對為了綜合評估本實施例提出融合方案的綜合性能。昆明軟件測試單位